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1. INTRODUCTION

The objective of the first sections is the relationship between the factorisation
of scalar functions and the theory of singular integral equations as far as they
are relevant to boundary value problems for holomorphic functions. By Cauchy’s
integral theorem, a continous function f : C=¢C posesses an integral representation
in its domain of holomorphicity, bounded by a contour I :

1) fo) =2 [0 g

= , zeC\I
omi Jpt— 2 zeCy

If T divides the Riemann sphere C into two disjoint domains ', then the above
equation defines two holomorphic functions of the complex variable z, depending
on whether z € I'y or z € I'_. We shall investigate the behaviour of f(z) for z € I.
If 0 € Ty and oo € T'_ then a holomorphic function fi in I'; has only positive
powers in its power series expansion around 0, while a function f_ holomorphic
in I'_ only has negative powers in its expansion around co. Conversely the search
for analytic functions leads to the investigation of integral equations. Since the
kernel has uncountably many singularities, the corresponding operator fails to be
compact, but its boundedness can be secured on certain classes of functions and
the boundary values are described by the formulas of Sokhotski/Plemelj. All this
is a short survey of classical results obtained by Muskelishvili [11], Vekua [12] and

Diplomarbeit, TU Berlin, June 1994 .



2 MARTIN KILIAN

Gakhov [4], standard references, where missing details may be found. After some
preliminaries, these problems will be generalized to matrix valued functions. The
matrix Riemann as well as the Riemann-Hilbert problems will be dealt with followed
by applications in the theory of differential equations.

2. SINGULAR INTEGRAL EQUATIONS

Definition 2.1. A contour I' is a rectifiable simply closed smooth ! path of finite
length that bounds a simply connected domain I'} in a positively oriented sense.
Denote by I'_ := @\ﬁ its unbounded compliment that contains co. Furthermore,
since this is rarely a restriction, let 0 € I';..

Set C(I") := {¢ : I" = C continous} and define thereon the Cauchy Integraloper-

ator ) 0
%)
Srp(z) := = /F P dt, z € C\TI.

The function ¢ is called the density and tiz the Cauchy—kernel of the operator St.
Integration along I' is to be performed positively. By Cauchy’s integral theorem
the function f := 1Sry, ¢ € C(T) is holomorphic in the domains I';. and I'_ and
is therefore called piecewise holomorphic. Denote the restrictions:

fie_ = f-,
f|F+ = f+
The power series expansion of f_ is
1 11 — tF
t—2 2 1-1% :—szﬂ,zEF_
z k=0

and thus
1 1 _
f-(z) = 5 Z z_k/ptk Yo(t) dt
k=1

In particular f_(00) = lim|, 0 f=(2) = 050 f_ is of order < for large ||z := V22

Nonconstant holomorphic functions fi : '+ — C posess poles when extended
continously to I' due to their integral representation, since the Cauchy—kernel van-
ishes.

Definition 2.2. For zp € T', e > 0 and I'c(20) := {t € T : ||t — 20| < €}, the limit

lim M dt

=0/r\r(z0) T 20
is called the principal value of the integral fF % dt in zg.
Example 2.1. : (¢ = 1) Let z € I be arbitrary and define
H(z0):={{ely:llE—2=0},0>0
H(z; 0) is homotopic to I'\I',(z) and

/F\rm §d—£z B /H(z;g) Sd—gz

For our purposes a C? - parametrisation of T' suffices.
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and in polar coordinates £ = z + pe'” have d¢ = ige’”dv and

lim = lim idy =irm
e=0 JH (20 E =2 220 Jp(zyp)

since in the limit I',(z) straightens into a line, and thus the argument ¥ varies by
. Alltogether with Cauchy’s integral theorem we get:

1 1 1 for 2 € F+
imJrt =2 0 forzel_

the winding number of a point z € C with respect to I'. Therefore the integral
operator Sr is defined at least for constant densities.

From the decomposition for a zo € I':

®) Aﬁ@mzﬁfﬂ;ﬂ@m+mm/tl

t—Zo t—Zo rl—=%20

dt

it follows that we need to investigate only the first integral of the right hand side
of (3) for the existence of the principal value for a given density. To achieve some
estimate for the line integral of %ﬁfzo) we will need more than mere continuity.
Functionspaces, on which Sr turns out to be bounded are C* - and L” - spaces.

Holder continous densities are most commonly dealt with in the classical literature.

Definition 2.3. A complex-valued map ¢ on a set U C C is called uniformly
Holder continous with Holder exponent 0 < o < 1, if there exists a constant K € R
such that

le(s) =@l < Klls — ¢[|* for all s, ¢ € U.

Denote by C%%(T") the Banach-algebra of uniformly Hélder-continous bounded

functions on T’ w.r.t the norm || - |lo = || [loot | * |a ¢
®(s) — e(t)
lella = sup (@) +  sup 1220l
tel s,tel, s#t “8 - t“

In the following let H-continous be synonymous with bounded uniformly Hélder
continous. Of technical significance is the fact that H-continuity is a local property

Lemma 2.1. Let U CC, 0 < a <1 and ¢ : U — C satisfy:
(1) le®)|| < K for allt € U
(2) There exist v > 0 and C € N such that ||o(s) — p@)|| < C||ls — t||* for all
s, t € U for which ||s —t|| <.

Then ¢ is H-continous with ||¢||e < K + maz(C, 2E)

P
Proof. If ||s — || > =, then
[[s — ¢l

HMﬁ—wamg2ngK<_7_J

and thus | ¢ | < maX{C,i—Ig}. O

Uniformly Holder-continous functions ’live’ between the continous and the dif-
ferentiable functions and guarantee the existence of the principal value.
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Theorem 2.2. The principal value of the Cauchy integral

1
fiz)=— &dt forall zeT
m Jpt—z

exists for all densities o € C%*(T') with 0 < a < 1.

Proof. Pick an r € (0, 1] such that the normal n : I' — S* satisfies :

(1) (n(t),n(s)) > % for the scalar product (-,-) and for all s,t € T, ||s —t|| < r
(2) {€€T|||§-z|| <r}=:T,(2) is connected for all z € T".

Project T',.(z) onto the tangent T.I' in z along the normal ( in general a non-
tangential approach suffices [4] ). Then the line elements dt on I" and dr on T.T’
satisfy :
=TT <9
= < 2dr
(n(t),n(s))

With this we obtain the following estimates :

o(t) — (2 " o " 4re
[ A= e <opo . [ sl tar < atol [ tar <2l
T(2) 0 @

[l —r
lo(t) — ¢(2)l o .
/ ot <l ¢ |a It =zt < v T ] ¢ a
nr.(z)  lt—==zll I\T, (2)
and thus the integral fr %f(z)dt exists improperly for all z € I a

3. THE FORMULA OF SOKHOTSKI-PLEMELJ

The formula of Sokhotski—Plemelj renders the uniqueness of the boundary values
that f; and f_ aquire when extended from I'; or I'_ respectively onto I'. The
Cauchy integral f(z) = %Sw(z) is itself H-continous on I'y and I'_, except for a
jump when crossing I'. To show this, put a parallel-strip around I': Pick h > 0
such that every point z in Dy, := {s +nhn(s) : s € I',n € [-1,1]}, n the normal on
T, posesses a unique representation z = s+ nhn(s). To use Lemma 1.1, decompose

f as follows:

1 t) — 1
flo) = = ©(t) ¢(S)dt+<p(_5)/ it
2im Jr t—=z Zim Jrpt—=z
o(s),ze "y NDy
dt + @,ZEF

1 [o(t) —e(s)
/F 0,zel'_NDy

2w t—=z

and use rigourous estimates to show that the integral ﬁ fr %dt is bounded
and locally H-continous in Dy, and thus with the Lemma H-continous in all of Dy,
in particular it thus exists improperly in the sense of the principal value. Taking

the limit ( s — 2):

Fr(e) = 5 /F A=)y 1)
flz) = 2Lm /F wcﬁ + %99(2)

t—=z
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Elimination of the integrals gives

Fr(2) = £+ 5(2)

1
f2) = 1) - 50(2)
and finally another application of the Lemma gives the H-continuity of f in all Ty
and T'_. Alltogether we have proven
Theorem 3.1. (Sokhotski,Plemelj) Let o € C%*(T') with 0 < a < 1. The holo-
morphic function f := %S’W :C\' - Cz — #fr %dt can be H-continously
extented from T'L to T' with boundary values for z € I':

1
@ Fi(2) = 2(50 £ I)g(2)
Corollary 3.2. The Cauchy integral operator Sy : C%*(T') — C%%(T") is bounded.

Corollary 3.3. The operators Sr und —Sr are adjoint with respect to the dual
system (C9%(T), C%(T)), induced by the non-degenerate bilinear form

(o) = [ @l)ile) dz s g € COm(D)
Proof. For two functions ¢, € C%%(T) set :
L[ ¢() 1 [ 9()
= — = r
1) =5 Rl 9(2) =5 SRR a
With (4) and Cauchy’s integral theorem we have
(Sre,¥) + (0, 5r¥) = (f+ + f- 9+ —9-) + (f+ — f- 9+ + 9-)

= 2(fygy) — 2forgl) =2 / f(2)glz)dz.

lzll=r
The last integral vanishes for large r, since f, g are of order 1 for large ||z||. O
Note: From (4) we obtain

(5) fr+f-=5rp
(6) fo—f=¢
As an application of the formulas of Sokhotski/Plemelj three boundary value prob-
lems will be solved :

(1) Prescribed jump: fy — f_ =¢

(2) Prescribed boundary values: f [r= ¢

(3) Prescribed glueing: fy = gf_ (Riemann-Problem)

For the first boundary value problem we have the following existence and uniqueness
result as a direct consequence of (5)

Corollary 3.4. For every ¢ € C%(T') there exists a unique f : C>cC holomorphic
in 'y and T'_, which is

(1) Continously extendable from T'y to Ty as well as from T_ to T_

(2) Vanishes for large ||z|]

(3) The boundary values satisfy f+ — f— = ¢ on L.
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Proof. f(z):= ﬁ fF f@ dt is the desired function and satisfies all three conditions.
If f' and f? are two solutions, set g := f!' — f2. By hypothesis fi — f1 = ¢ as
well as f7 — f2 =g so (fi — fL) = (f% — f2) = 0. Hence for the boundary values
of g we have gy — g = 0 on I'. Thus g is entire by Morera’s theorem and since
fL and f2 vanish at oo, ¢ is bounded, so by Liouville’s theorem identically zero.

Hence the solution is uniquely determined up to addition of entire functions. |

We adapt the following notation :
H* := {holomorphic maps in 'y and continous on T'; }
‘Hy := {in oo vanishing, holomorphic maps in I'_ and continous on r}
Thus every H-continous ¢ : I' = C can be decomposed ¢ = f, — f_. With
Hi :=HT N C»*(T) C Image{5(Sr +1d)},
Hp =My N C%*(T) C Image{$(Sr —1d)}
the next step is to show that this sum is direct: H;" N Hy = {0}. It turns out that

the only way to reconstruct a holomorphic function from its boundary values is if
one of the summands is identically zero:

Corollary 3.5.

¢ € Hf < ¢ € kernel{3(Sr — Id)}

© € Hi <= ¢ € kernel{3(Sr + Id)}
or to phrase it in terms of the second boundary value problem : For o € C%%(T)
there ezists exactly one holomorphic function f in Ty with f |r= ¢ iﬁ%(Sp—Id)go =

0, and for a o € C%*(T) there exists exactly one holomorphic function f in T'_
that vanishes at co, with f |r= ¢ when %(SF + Id)p = 0.

Proof. ' =' : Let f : 'y — C holomorphic and f(t) = ¢(t) for all t € I. By
Cauchy’s integral theorem, f can be written:

o= g [0 L [

= — ——dt = — —=dt ,z€T
2w Jpt—z 2ir Jpt—2z +

which by Sokhotski/Plemelj has the boundary values
1 1 1 1
= —S — = —S —_ = = 0
f+ S5ret S =9 e SSre— oy
so ¢ € kernel{$(Sp —Id)}

"< : Let ¢ € kernel{(Sp — Id)}, then f(z) := £Sry is holomorphic in I'y. with

boundary values f; = %Sw + %cp = ¢. Hence f |r= ¢. The second equivalence is
shown analogously. d

The operator Sp thus leaves functions holomorphic in I'y respectively I'_ invari-
ant.

(7) - Id SF‘ B = —Id

F|H+ Ho
Corollary 3.6. The Cauchy Integraloperator is unitary.
Proof. Sip=Si(fy —f ) =Srfs+Stf =fi—f =¢. 0
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The fact that S2 = Id means that
1 1
Pr = §(SF +Id) Or = 5(5[‘ — Id)

are complementary projections (i.e P? =P, Q? = Q, PQ = QP =0 ) and further-
more
im(Pp) = ker(Qp) = HFJ'_ ker(Pp) = im(Q[‘) = HI_‘
are closed subalgebras and render the decomposition of C%%(T) into the direct sum
CON(T) = Hy & Hyt

Note that the operator St cannot be compact and that the subspaces Hlf and Hp
are not finite dimensional.

4. THE RIEMANN-PROBLEM

The following boundary value problem was first formulated by Riemann in his in-
augural dissertation but since Hilbert first attempted to solve it using integral equa-
tions it is sometimes refered to in the literature as the Riemann-Hilbert-Problem.
As a prepatory notion for the solution we’ll need the following

Definition 4.1. For g : I' — C\{0} define the index, indr(g), as the integer, di-
vided by 27, by which the argument of g, arg(g), changes after going around I once
positively:

indr(g) := %/Fdarg(g)

where the integral is to be understood in the sense of Stieltjes and for two functions
fyg:T — C\{0} have

indr(f - g) = indr(f) + indr(g)
as well as
indp(g) = indp(f) — indr(g)
and for a polynomial p: T' — C\{0} :
indr(p) = #{roots of pin 'y }
where #{-} denotes the cardinality of the set.

If a function f is to be composed with any branch of the logarithm, its argument
mustn’t vary by more than 2m, for the composition Inof to be unique. On the set

{f € C(T) : There exists g : exp(g) = f} = {f € C(T) : indr f = 0}

we can uniquely apply exp and log and can therefore transform multiplicative prob-
lems like the Riemann-Problem into additive ones. Let

GCO(I) == {p € C%* : p(t) # 0 for all t € '}

be the subalgebra of invertible H-continous functions on I'. The contour I" divides
the Riemann sphere C into two disjoint domains 'y and I'_, in which holomorphic
functions are to be found that can be glued together along I'. Thus we obtain a
global function on C from local holomorphic data.
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Theorem 4.1. Let g € GC%(T') with indr(g) = k. Then there exists exactly one
piecewise holomorphic function f with root of order k at 0o, whose boundary values
satisfy f+ = gf- and fy resp. f— non-zero in 'y resp. T'_.

Proof. To take the lorarithm of g, set G(t) := 9(t) ,t € T. Now indpr(G) = 0 and

th
thus In oG is H-continous and single valued. Define
1 In oG(t)

F(z) = — [ 2504
@)= | 7

By Sokhotski/Plemelj F' has boundary values F_ and F which satisfy :
F, —F_ =lnoG

exponentiating gives

(8) SFr(t) %en(w
e~ (?) for large ||z|| goes to 1, since F_ vanishes for these. The function
ef+(2) for z e 'y
f(z)= { z Rl forz el

solves the Riemann-problem f, = gf_ and has a zero of order x at co. Concerning
the uniqueness, let f be another solution with zero of order k at co and fi = gf_.

Then ¢q := § is piecewise holomorphic and the boundary-values satisfy :

qu = ;—i = % = ;—: = q7 on F
so with Morera’s theorem ¢ is entire going towards 1 for large ||z||, thus ¢ = 1 by
Liouville and hence f = f. O

The equation (8) can be rewritten as
g(t) = eF+(t) L pr . o= F-(1)

and in the above proof, the function ¢ was factorized, split into three factors,
of which the right-hand side one was holomorphic in the interior, the left one
holomorphic in the exterior of the contour, both invertible in their domains of
holomorphicity and the middle factor was a monomial. Since merilly the knowledge
of indr(g) = k for a given g € GC%“(T") was required, GC%“(T") posses the following
decomposition :

Set go(t) := 28 and since indr(go

= ) = 0 there’s a function f € C%%(T') with
el = go. With the projections Pr = 3(Sr + Id) and Qr = $(Sr —Id) and the fact
that Pr — Qr = Id we get

(Pr—Qr)f _ epr‘f . e—Qr‘f — g(t)

—of =
=e =e€
go i~

since e7rf € GH* and e~/ € GH ™ have
g(t) = e~ /W) gr . PriD)
=:g-(t) - t" - g4 (1)
a factorisation of g € C%(T") and for the Riemann problem the solution :
oors
1~

fri=eP o=
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if the boundary values are to satisfy f; = gf_. Furthermore
GC**(T) = GHy © M(T) ® GH:
where M(T") := {t = t* | k € Z}. For meromorphic functions r : C — C without

essential singularities, this factorisation becomes algebraic :

A meromorphic function r without zeros and poles on a contour I' can be written

as a rational function r = g, with p, ¢ polynomials of the form p(\) = Hiszl A=)

and ¢(\) = TJi_, (A — u;) with \;, u; € C\I'. With the aid of partial fractions r
can be written as a finite Laurent series :

-1

b
r(\) = Z A" +Zr¢/\i
i=0

—r () 41 ()

and thus an additive decomposition.

Definition 4.2. Denote by R(I') the algebra of rational maps on C with poles
away from I" and with

R™(T) :={r € R(T") pole-lesson I"_}
and
RY(T) := {r € R(T) pole-less in 'y }

the subalgeras of the direct sum.

Again, this decomposition is achieved by the projectors Pr = $(Sr + Id) and
Or = Pr — Id. This statement is independent of the previous existence claims :

Lemma 4.2. For the decomposition r = r_ +ry of r € R(T") with r— € R—(T)
and ry € RT(T) we have for allt € T :

Srr(t) = re(t) —r-(t)

Proof. With equation (3) we have :
1 — t t 1
Spr(t) = —/ re(m) =) g, Tl )/ dr =14 (t)
r r

LT T—1 X T—1

% is holomorphic in T'y. If r_ is of the form r_(t) =

n € Nund p € T'y, then :

since the integrand
1
=p" >
n—1
r_(r) —r_(t)

== (t=p) =)

=0

T—1
and thus
Srr—(t) =—r_(t) ,t €T

for general r_ € R~ (I") the claim follows from the fact that these posess an expan-
sion r_(t) = 2221 W with a; € C o, € Ty ym; > 0. O
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In the multiplicative decomposition of GR(T") the individual factors should be
invertible in their domains of holomorphicity. We therefore have to seperate the
roots of p and ¢ such that Ay, ... A\s, p1,....0 € Dy and Agyq,...Ag, fyy1,-pop €T

! i S
(9) 7‘()\) _ Hj=1 1- HT .)\N . Hi:erl A=A
Tl 1A LD
| 2 Hj:l+1 2%
(10) =r_(\) - AN (N

where N = [ — s is the difference of zeroes and poles of r in I';.. ( Logarithmic

residue fF %d)\. ) Since we restricted our attention on H-continous functions up
to this point, we sketch two further classes where these methods are successful :

Example 4.1. (The Wiener algebra) Consider absolutly convergent Fourier series
on the unit circle S! :

+o0
W(SY) :={p:S" > Clee™)= > @ne™ llellw =D |en|< oo}

n=-—oo neZ
with the obvious decomposition
W(S') =W~ (sh) @ W*(s?)
where )
W(S") = {o-(e") == > wne"}

and -
WH(SY) = {pr(e”) = one™™}
n=0
and the corresponding projections
Q:W(S'") = w~(sh
P:W(SH — Wt (sh

The continuity of the singular integraloperator Sr is a consequence of the fact that
R(T) lies densly in W (S1). All calculations and formulas transfer.

Example 4.2. (Square integrable functions) On the Hilbert space of square in-
tegrable almost nowhere vanishing functions on I' we can also solve the Riemann
problem :

f+ = gf- allmost everywhere on I'

Lemma 4.3. Sp: L*(I') — L*(T),¢ — = [. @dt is bounded.

Proof. (C%<(T"),C%%(T)) is a positive dualsystem, generated by the scalar product
(9) = [ 1&gz fig€ o)
r

The adjoint S} is bounded since Sp : C%*(T') — C%%(T) is bounded. Hence the
claim follows from the Lax-Milgram-Lemma and the fact that C%®(T) is dense in
L3(T). O

The induced projections Pr, Qr are orthogonal on L2(T') only when T is a circle
[6]. In the course of solving the Riemann problem, the following sufficient conditions
on function spaces £ were obtained:
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(1) Decomposition into a direct sum £ =+ & £~

(2) Sufficient smoothness to ensure existence of principal value

(3) Closedness of the subalgebras £7, £~ w.r.t inversion
Subalgebras of C(T") satisfying 1.-3. are thus natural domains of the integral opera-
tor T':= P — gQ whose kernel is a solutionspace of the Riemann problem f, = gf_
are called admissable in the literature. It should also be mentioned that the pre-
ceeding theory has been extended to LP-spaces for 1 < p < oo [6].

5. FACTORISATION OF MATRIX VALUED FUNCTIONS

Let A = (aij)?’jzl be a n x n-matrix whose entries a;; : I' = C are continous
functions of the variable A € I'. Alternatively we can think of A : I' — gl(n,C)
as a loop in the Lie-algebra gl(n,C). Operators on n X n-matrix-valued functions
operate on the individual entries, so for example

/FA()\)d)\ = </F aij()\)d)\> :jl € gl(n,C)

for a continous A € gl(n,C(T)). For a vector-valued function z : ' — C* and
two matrix-valued functions A(\), B()\) the matrix-vector and matrix-matrix mul-
tiplication are defined pointwise: (Az)(\) = A(A)xz(\) and (AB)(\) = A(MN)B()).
We will use the notation of the previous sections H*, R(T), £(T') etc to denote by
gl(n, A) the algebra of n x n-matrices whose entries are elements of A.

Definition 5.1. A matrix A(z) of the algebra GL(n,C(T)) of invertible n x n-
matrices with continous entries posesses a left factorization w.r.t T if it can be
written

A() = A1 (2)D(:)A_(2)
on I where the outer factors AL(z) are restrictions of holomorphic invertible ma-
trices in 'y i.e AL € GL(n,H*) and the middle factor is a diagonal matrix:

D(z) =

and the integers are ordered k1 > ... > k,.

Exchanging + and — leads to the notion of right factorisation and the two
theories are essentially equivalent modulo transposition. We shall pursue the left
theory and will first investigate the polynomial loops.

Definition 5.2. A matrix whose entries (a;;()))7;_; are polynomials in A € C is
called a polynomial matrix and can also be written as a polynomial with matrix
coefficients :

AN = Ao+ AN+ ..+ A\, A, €4gl(n,C)

This polynomial is called proper, if the coefficient of the highest power is regular,
i.e det(A,,) # 0. The degree of a polynomial matrix is the highest degree of its
entries

deg(A(})) := max{deg(ai;)}

]

DIVISION :
A(X), B(A) polynomial matrices of order n, B proper and if A(A\) = Q(A\)B(\) +
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R()\) ,deg(R) < deg(B), then Q(\) is called right quotient, R()\) right remainder

of the division of A(X) by B(\)

Euclidian Algorithm :

Let A(\) = 32, A;\* and B(A) = 3°7_ BjM polynomial matrices with
deg(A(N)) = m

and
deg(B(\)) = p

(1) (case: p>m) Set Q(A\) =0, R(\) := A()N)

(2) (case : p < m) Divide A(\) by B(\) from the right, we obtain for the
highest term a first iteration Q(\) = A,, B, ' A™ 7 + ... and hence
AQ\) = A By 'A™PB(\) + RM())
where RO(\) := R{Y + - + Rfi?n and deg(RV(\) = m) < m
If m() < p, set Q(\) = A, B;'A™ P and R(\) = RM(N),

otherwise (m™) > p) :
Divide R(V(\) by B()\) from the right, i.e

RM(\) = 3331,3—1)@“’—113()\) +R®(\)

P
with R®)(\) = R((f) -+ R(2 /\m ? deg(R®(\) = m® < m®
If m® < p: set Q(\ ) = A, ByAm? 4 RUY) B =p and R(\) =
R®())

otherwise (m(? > p) :

Divide R (\) by B(\) and proceed as above and since the degrees of the
remainders R'(\) are decreasing, there exists i € N such that the degree of
the i-th iterated remainder is smaller than the degree of the divisor B(\).
Thus A(\) = Q(A)B(A) + R(\) with deg(R) < deg(B) where

QN = 4B, AP 4 R‘”l)B*lW”*p + RO B AT
R(\) = RO()
Concerning the uniqueness : If A(\) = ( )B(A) + R(\) = Q(\)B()\) + R()\) with
deg(R(N)) < deg(B(N)) > deg(R(})
and R y
QM) = QM\)B(A) = R(A) — R())
then assuming Q(\) — Q(\) # 0 we obtain the contradiction deg(R — R) > deg(B).

6. DIAGONALISATION

Analog to constant matrices there also exist normal forms for polynomial matri-
ces into which they can be transformed by means of elementary transformations.

Definition 6.1. Two polynomial matrices are called equivalent, if a combination
of the following operations transforms one into the other.

(1) Multiplication of a row or column by a non-zero scalar.
(2) Addition of a polynomial multiple of a row or column with a row or column.
(3) Interchanging of rows resp. columns.



ON THE RIEMANN-HILBERT-PROBLEM 13

Note that matrix multiplication with the above elementary matrices from the left
effect lines, from the right columns. The corresponding matrices to the operations
1.-3. have A-independent non-zero determinant.

DIAGONALISATION (SMITH - Form) :

Let A(M

(1)
(2)

) = (@ir(N))i'x=1 be a polynomial matrix of order n >0

Choose a;x(\) of least order that’s not identically zero and use elementary
transformations to exchange it with a1 (\)
Divide all other entries of the first row and first column by a1 (\) i.e :

ai1(A) = a11(A)gin (A) +rin(A)

ark(N) = a11(N)qie(N) +rix(A)

For a;1 () to be replaced by r;1 (M) resp. a1x(A) by r1x()), subtract from this
row resp. column the corresponding multiple of the first row resp. column
. If not all remainders vanish, a new pivot element will be at service to
succesivly reduce the orders of the remainders until finally all entries of the
first column and first row except the current diagonal element a;1(\) will
have vanished, that is A()) is equivalent to a matrix of the form

( an(/\) ~0 ) (*)
0 A(N)

In the matrix fi()\) there might be entries # 0, whose order are smaller
than aq1(\). If this is the case, bring the element of least order that doesn’t
vanish identically into pivot position and start with step 2. A repetition of
this order reduction will finally transform A(\) into a matrix of the form
(%), in which @1 (\) is the smallest order entry not identically zero.

If @y;(\) divides an entry a;;(\) of A(\) with remainder, add the j-th
column to the first column, determine quotients and remainders of this
new column from the division by @11 (A\) and repeat steps 1. and 2. until
the form (x) is achieved. This process can only be repeated finitely many
times before we obtain a matrix of the form :

(" )

in which d;()\), after a possible rescaling, divides all non-zero entries of
A1(\) without remainder. Now proceed analogously with the submatrix
A (V).

Alltogether we have proven

Theorem 6.1. For every polynomial matriz A(\) there exist two matrices E(N\), F(\)
with non-zero constant, A-independent, determinant that diagonalize A(X) :

ENAMNFA) = diagldy (M) .y dn (V)]
di—l()\) | dl(/\) ,i - 27 N

The Smith form is not unique, since there where choices involved in constructing
the matrices E()\), F/(\), but it turns out that the exponents of the diagonal entries
can be computed.
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Lemma 6.2. The entries of the diagonal matriz d;(\) are given by
() = ged{i x i-subdeterminants of A(\)}
Y ged{(i — 1) x (i — 1)-subdeterminants of A(\)}

The d;(\)’s are called invariant divisors and comprise all invariants under elemen-
tary transformations.

Proof. Let E(AM)AMNF(X) = diag[di(N),...,dn,(N\)]. The rows of E(A\)A(M) are a
liner combination of the rows of A(A) and hence i x i-subdeterminants of E(A)A(X)
are linear combinations of ¢ x i-subdeterminants of A(\).
Likewise ¢ x i-subdeterminants of E(A)A(A)F(A) are linear combinations of ¢ X i-
subdeterminants of E(\)F()), and hence also of ¢ x i-subdeterminants of A(\)
ie

ged{i x i-subdet. of E(A)A(AN)F(\)} = ged{i x i-subdet. of A(\)}
Since d;_; | d; for i = 2,...,n the elements di () - ... - d;(\) are always the gcd’s of
all i x i-subdeterminants of E(A)A(N)F()\) that don’t identically vanish, and so the
conclusion follows with

dl()‘) = ng{a’ij()‘) | 1,7 =1, 7n}
O

Since every complex polynomial factorizes, the Smith form is a convenient means
to convey the zeroes of the determinant of A(\).

Definition 6.2. The individual factors (A — \;)* of the diagonal elements of the
Smith form are called elementary divisors of multiplicity ;.

The obove can be used to prove

Corollary 6.3. Let A(z) = (a;5(2)) be analytic in zo with det(A(z)) not identically
zero. Then A(z) can be written :

A(z) = E(z)diag[(z — zo)kl, ey (22— zo)k"]F(z)

with matrices E(z), F(z) analytic in and invertible in a neighborhood of zo and
integers ky > ... > k.

Proof. Let m;; be the multiplicity of 2y as a root of a;; having set m;; = oo if
a;; =0 and mg; = 0 if a;;(20) # 0. Let p := min{m;;} and since det(A(z)) is not
identically zero, must have p < oco. W.l.o.g let p = my;. Now multiply the first
row of A(z) with % to obtain a matrix A;(z), whose (1, 1)— entry is (z — zo)P.
Write Ay(2) = (bij(2));;=1 with b;;(2) = (2 — 20)Pc;ij(2) analytic functions ¢;;(2)
and ¢;;(z0) # 0 and now proceed as is the polynomial case. O

7. SPECTRAL THEORY OF POLYNOMIAL MATRICES

A root A of det(L())) of a polynomial matrix L()) is also called an eigenvalue
of L(\) and a vector y € C*\{0} resp. # € C*\{0} a corresponding left resp. right
eigenvector, if yL(j\) = 0 resp. L(S\)x = 0. In particular, there are k corresponding
left resp. right eigenvectors yi, ..., yr resp. z1,...,x; to a root of multiplicity k of
det(L()\)). For aesthetic and habitual reasons we’ll pursue the right theory and
omit the reference 'right’



ON THE RIEMANN-HILBERT-PROBLEM 15

Definition 7.1. The vectors x1, ..., xx ,x1 # 0 form an eigenchain to an eigenvalue
A of lenght k, if the following equations are satisfied :
J

1 ~
HL@)(A):CJ-H,,, =0 ;j=0,1,.,k—1
p=0""

where L) ()) denotes the p-th derivative of L w.r.t A in A.

A Jordan chain to an eigenvalue A\ can be easily obtained from a Smith form in
the following way :
Let diag[di(N), ..., dn(A)] = E(A)L(A)F(X) be a Smith form of a polynomial matrix
L(\). Denote with f;(\) the i-th column of F/(\) and with e;()\) the i-th column of
E~Y(X). Then L(\)f;(A) = e;(\)d;(N),i =1, ..., n.

If d;(\) = (A — NEr(\) with #(\) # 0, &k > 1, then \ is null-eigenvalue of L()\)
with elementary divisor (A — A\)®. Differentiating L(\)f;(A) = e;(A\)(A — A)Er())
(k — 1)-times in A then the r.h.s vanish and addition of all k-1 equations renders :

i,
3 ( ; ) LX) U () =0forj=0,1,. k1
p=0

Thus the vectors

FO D). g 1470

form an eigenchain of lenght k to the eigenvalue X. With the aid of eigenchains one
can also obtain a fundamental system of the following linear system of differential
equations with constant coefficients.

Lemma 7.1. The vectors uy,...,u, in C* with uy # 0 form an eigenchain to the
eigenvalue A of the polynomial matriz A(X) = 3" ) A;\* if and only if the functions

solve the homogenous differential equation :

m

Z Aidd—;,-v(r) =0

i=0
Proof. The simple computation is achieved by writing A()\) into its Taylor series
in A:
AR =3 AV =)
i=0
and replacing A with %. d

The number of roots A; of det(A(€)) of a polynomial matrix A(§) = Zé‘:o A8 A5 €
gl(n; C) counted with multiplicities (c.w.m) is at most the product of the highest
power with the order n of the matrix. The polynomial det(A(§)) can thus be written

in

det A(€) =k[J(€-XN) keC

=1
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To each non-constant elementary divisor dy,(§) = (£ — \i)™ of degree r; assign a
pair (dei , dei ), where dei is the n X r;-matrix whose columns z1, ..., z, are the

eigenchain to the eigenvalue \; and dei = Aids,t + 0541, is the usual r; x r;-Jordan
block :

A1 o - 0
0 .
Xa,, = collzy,...,xr] Jay, = oo e
: . -1
0 oo e 0N\
If dy(N),...,ds()\) is an enumeration of all elementary divisors of the polynomial

matrix A(\), set
X :=col[X4,,...,Xd.] € gl(ord(A) x deg(detA); C)
—_—— ——
n n

where the matrix X is arranged such that the first columns of the Xy,’s span the
kernel of A();) and

T,
Ji=Jg, &...8 Jq, =
Ja,

Definition 7.2. The pair (X, J) is called (finite) spectral pair and contains all
spectral data.

Due to the block structure the k-th power of .J is obtained by taking the k-th
power of each individual Jordan cell. In particular

k
K\ yk=n
T = (NId+ 61 )F =D ( N ) AT g

n=0
All in all the spectral data of a polynomial matrix A(A\) = Zizo A \" with A; €
gl(n,C) are encoded in the solution of the matrix equation of the size n x in :
(11) AgX + 41X T+ A X TP+ 4+ AXJT =0
Note that the matrix
Q = col[X - J]L
has maximal rank and in the special case det(4;) # 0 have @ € GL(In;C) and can
assign the polynomial matrix an In X [n-matrix :
0 I
l _ 0
L) =) AN = L= ,

= 0 I

Az_lAO Al_lAlfl

Definition 7.3. £ is called the first companion matrix, the transposed £T the
second companion of the polynomial matrix L(\).
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Zo,---,Tkr—1 iS eigenchain of L to the eigenvalue A iff the vectors

Zo T Tr—1

Azg Ar1 + 2o ATp—1 + Tp—2

)\21'0 )\21'1 + 2x0 o (*)
. -1 —1 ' 1—2 :

)\ o )\ I —+ (l — 1))\ o Al_lxk—l + ..+ Tho

are an eigenchain of £ to the eigenvalue A. L is similar to a Jordanmatrix which
is diagonal iff all elementary divisors are simple. It is worth noting that the chain
in (x) is linearly independent and that two chains to different eigenvalues of £
are linearly independent so that the set of all chains form a basis of gl(in;C). In
contrast to this, neither the vectors xg, ..., xx—1 need be linearly independent nor
are chains to different eigenvalues linearly independent. In the case det(A;) = 0 the
polynomial matrix L(A) has the linearisation :

I 0 ...00 0 I o . 0

0 I ...00 0 0 I 0
Cr(A):= A _

: I 0 0 0 0 ... I

0 ... ... 0 4 —Ag —A o —AL

with In X In-matrices such that we also have det(L(\)) = 0 iff det(C(\)) = 0. If
det(L(\)) not identically zero, it can only have finitely many, so that the inverse,
where it exists can be written :

L~ Y(\) =[Id,,0,...,01CL(N\)"1[0,...,0,Id,]"

and for L#()\) := A L($) have

L#¥\)~'=10,...,0,1d,)C¥ (N)0,...,0,1d,]

8. RATIONAL MATRICES

If a polynomial matrix A(\) = . A;\! is pointwise invertible on a contour I i.e
det(A(XN)) # 0 for all A € T, then we can arrange the roots of det(A(\)) with the aid
of the Smith form E(A\)D(\)F(A) on the middle diagonal term D()) in such a way
that D(A\) = Dy (A\)D_()\) and det(D4 (M) # 0 for A € Ty and det(D_()\)) # 0 for
A € I'_. Hence a factorisation of the polynomial matrix

AN) = AL (MA-(N)

is achieved, where A, in '} holomorphic and invertible and A _ is invertible in ' _
but of course A_ cannot be holomorphic there, since the entries are polynomials
and have poles at co. To remove these poles of the negative factor we need negative
powers of A\ and thus leave the class of polynomials and move on to the rationals.

Definition 8.1. Let I' as previously be a contour on the Riemann sphere. Denote
by

p(/\)) p,q polynomials, g(\) # 0 for all A € T'}

gl(n, R(D)) = {(n—j@) -2

1,j=1



18

MARTIN KILIAN

the rational matrix functions with poles away from I'. The invertible elements in
gl(n,R(T)) are denoted by

GL(n,R(T)) :={R(A\) € gl(n,R(T"))|det(R()\)) # 0 for all A € T'}

and with

GL(n,RE(T)) := {R()\) € GL(n,R(T))|det(R()\)) #0 for all A € T'1
und R(A) holomorphically extendable to I'y }

The projections P = 1(Sp +1d) and Q@ = (Sr — Id) realize the decomposition

gl(n, R()) = gl(n, R™(T)) & gl(n, R (T))

The next aim is to show that any regular R € GL(n,R(I")) can be decomposed
multiplicatively. Analogously to (9) there appears a middle term that swallows the
poles of the outer factors.

Theorem 8.1. Every regular R € GL(n,R(T")) allows a factorisation :

R(\) = Re(ND(N)R_(N)

with Ry € GL(n,R*(T)) and

Ak
D()) =
Ak

and integers k1 > ... > ky, called the partial indices.

Proof.
(1)

(In [3] the proof is for R= R_DR;)

Step : Pull out the ged of all entries of R(\), which is a rational function
r(A) and factorise it as in (9) w.r.t I'. Hence

RO =re(A) - A" P(A) -7 ())

with a polynomial matrix P()) and the rational functions r; , r— that are
invertible in their domains of holomorphicity and so it remains to factorise
the polynomial matrix P(\). (A" will be dealt with later.)
Step : (Construction of the positive factor R4 () )
Denote the set of zeroes of a map F' by Z(F'). Now find the Smith form
of P(A\) = E(A)D(A)F(\) and sort the zeroes of the diagonal entries such
that

D(\) = Dy (\)D-(\)
with Z(det D4) C I'_ und Z(det D_) C I';.. Since E()) is polynomial in
A and invertible everywhere have

Ry (\) := EA)D4(A) € GL(n,R*(T))

Step : (Partial construction of the negative factor R_(\) )

The entries of the negative factor to be constructed mustn’t all be zero
at oo and what more, we want R_ invertible in oo, which implies that
each column needs to have an entry with a constant coefficient, and these
columns need to be linearly independent. This shall be achieved in the
following and fourth step. The first goal is to transform the remaining
term D_(A)F()\) into a matrix with solely negative powers of A\, whose
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determinant only posesses a root at A\~! = 0. Since Z(det D_F) C 'y
have for M :=deg(D_F) :

N(det M D_({)F(5)) € {0} UTT'\ (oo}

Take the Smith form of AMD_($)F(3) := AME;($)D1(5)Fi (%) and again
sort the roots of the determinant such that

Di(5) = diaglh (), ., dn(5)]
1

= diaglfi (s s S diaglar(5)s- 1 0a()

and Z(g;) C T;"\{oo}. So we have

R_(3) = diaglgr (). - 9a()] - Fa

with remaining middle factor

1 . 1 1
X) 'dmg[fl(x), .. -vfn(X)] =: M(})

where K > 0 is chosen so that any positive A\-powers that might have
appeared during the last diagonalisation are compensated. Hence the fac-
torisation of rational matrices is reduced to the factorisation of polynomial
matrices whose only root of the determinant lies in A™! = 0.

Step : (Construction of the monomial factor D()) )

If z(\) = :;_a ;A" with a,b € N is a polynomial vector of negative \-
powers with coefficients z; € C*, then z(co) = 0 except when b = 0 and
xo # 0. If the highest power for which the coefficient isn’t zero is pulled

out, w.l.o.g let this be b, then

1

)\) € GL(n,R™(I"))

)\I{+ME1 (

—b 0
E T\ = AP E Tip A
i=—a i=—a+b
#0in co

This procedure will now be applied to the columns of M. Let | be the
multiplicity of the root A~ = 0 of det M()) and write

M) = col[ri(A),...,rn(N)];  r:i(X) polynomial columns

Let mq,...,m, be the multiplicities of the roots % =0of ry,...,m, and

w.lo.g ordered such that my > ... > m,. Write r;(A=") = X7 (A~"!) and
thus
. o1 o1
MO) = diagA™, .. X" collr (5), o ($)] (4
If 330y m; = [ then (%) is the desired factorisation of M, otherwise

(X m; < 1) the {r;(0)}, are linearly dependant. Let p be the smallest
number for which the r; (0),. .. ,r;(O) lie in the span of {r (0), ... ,r;_l (0)}.
Then there exist ay,...,a, € C not all zero, such that the vectorvalued
function A — Z?Zl ozjr;()\) has aroot at A = 0. Replace the p-th column of
M with Y OéjT;— (M) by means of some elementary transformation. With this
we have increased the multiplicity of the p-th column by at least one and
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repeating this procedure until the sum of the multiplicities of the columns
r; is maximal i.e [. Then again () renders the desired diagonalisation, with
the A-powers of step 1 and step 3 included in the diagonal matrix.

O

In 1913 Birkhoff obtained the analogous result for matrices holomorphic and
invertible in a puntured disc in the attempt to reduce homogenous linear systems
of differential equations with holomorphic coefficients to a canonical form. In the
1950’s Gantmacher [5] and Masani[10] found counterexamples to this reduction.

9. THE PARTIAL INDICES

The partial indices developed in three steps in the preceding proof of Theorem
7.1 . In the first step, the factorisation of the rational scalar function contributed
the difference between zeroes and poles, in the third step the change of coordinate
A= % and the successive diagonalisation, where the highest occuring A-power is
pulled out, further change the indices and finally in the fourth step the zero A = oo
is divided out of the columns. Unfortunately these manipulations don’t lead to an
apriori formula for the partial indices, which are further obscured by the fact that
the diagonalisation(Smith form) is not unique. Yet it turns out that the diagonal
factor is unique, that from one factorisation all others can be obtained and that the
dual theory of singular integral operators affords the possibility of finding a formula

for the partial indices.
Lemma 9.1. Let A(\) = AL (\M)DMNA-(\) = Ay (MDA _(N) be two_fac-
torisations of A(\) € GL(n,C(T')) with Ay, Ay € GL(n, H(T)) and A_,A_ €
GL(n,H (T)). Then D =D
Proof. Let kq,...,k, and INcl, ceny kn be the corresponding partial indices.
AyDA_=A,DA_ & A7'A;D=DA_A""
Assume there’s a 1 < p < n such that w.l.o.g k, > k,. Then
Bi>. . >k, >k, >... >k
with k; — 7;;]' > 0 and hence

(A-T-lAJr)ij tkiil}j = (A*A:l)ij for i = 17 BRRY ] =pPy...yN
and thus the contradiction det(A_A~') = 0. O

Definition 9.1. k:=k; + ...+ k, is called the total index for the partial indices
ki,...,k, of a factorisation of an A € GL(n,C(T))

Note that

(12) indpdet(A(X\)) = indrdet(D(X\)) = 2": ki=k

since by the argument principle indpdet(A+) = indpdet(A_) = 0 due to the absence
of zeroes in the corresponding domains of holomorphicity.

Concerning the connection between factorisations and singular integral opera-
tors, let’s investigate the operator

T:=P—-AQ
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A € GL(n,C(T")), on admissable spaces of vectorvalued functions gl(n x 1,&(T)).

Lemma 9.2. Let A(\) € GL(n,C(T")) and A = Ay DA_ be a factorisation with
Ay € GL(n,H* (). Then T =P — AQ is invertible iff all partial indices are zero.
Furthermore T is Fredholm with indices

(13) a := dim(kernel(T)) = Z ki B := codim(image(T)) = — Z ki
ki >0 ki<0

Proof T=P - A DA_Q= A; (P-DQ)(A_Q+ A7'P)
~—

=:T =T =:T3
The operators T, T3 are invertible with 7, ' = A7! and 75 ' = A, P — A7'Q. So
the product 7171573 is invertible iff T = P — DQ invertible which is the case iff D
is invertible i.e when ¢ — t* is invertible for all i = 1,...,n and thus iff k; = 0
for all i = 1,...,n. The equations (13) follow immediately from the fact that
dim(kernel(T")) = dim(kernel(T)) and codim(image(T)) = codim(image(T>)) O

From the first step in the proof of theorem 7.1 it evidently suffices to consider
matrix valued Laurentseries for the description of the partial indices

l
(14) R(\) =Y RX  (A€l, R;e€gl(n,C)

i=—1

where at least one of the coefficients R_;, R; is assumed not to vanish identically.
Consider for j € Z the integral operators

Tj = 7) — /\_]R()\)Q

for which the above Lemma gives

(15) aj = dim(kernel(T})) = > (ki — j)
ki>j

(16) B; := codim(image(T};)) = Z (G — k)
ki<j

In particular the dimension of the kernel of 7; and the codimension of the image of
T, are zero, so for the partial indices this means

(17) 1>k >...2ky, > -1
Hence it suffices to compute
vi=#{ieN|k =}
and since by (13) we additionally have
vi =41 — 205+ a1 (<5 <)

it remains to determine the a;’s. The following theorem relies on the resolvent
L=1(\) = X(Id — AJ)~'Y of a polynomial matrix L()) in a punctured neighbour-
hood of an eigenvalue % with corresponding right and left eigenchains X and Y.
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Theorem 9.3. For a R(\) € GL(n,R(T)) of the form (14) let (X1, J1) be that

part of the spectral data of L(\) := )\U%(%) with respect to the p-null-eigenvalues

(c.w.m) Xo of L(\), for which \;* € T_. Let v; = #{i € N| k; = j}. Then

b eo{  pewn o prise
! dim(kernel(col [ X, JIGtY))  forj > —1

Proof. We'll first show that
kernel(T_;) = {f € gl(nx1,£()) | f(A) = X1 (Id,—\J1) tw, w € CP arbitrary } (%)
Since
dim(kernel(P — N RQ)) = indp(det(/\lR(%))) = indp(det(LO\)) = p
and the map
w = X1 (Id, — AJy) tw

is injective, the sets in (%) have equal cardinality and thus it will suffice to show
one inclusion : With a few insertions it’s easy to show that

ON'f = X, JH(1d, — AJy) " rw
so that especially for : =0 get Qf = f and thus Pf =0

Toi(f) = N (R QA f+ ..+ RIQNf)
=R Q\f + ...+ RO\ f
= R—1X1J{Jw +...+ R[XlJflw
21
=Y Ri X1 Jiw=0by (11)

=1
and hence the inclusion 'D’. Further

T=(P-XNRQ)(P+\'Q)
————
injective
so that
kernel(T') = kernel(7T_;) Nimage(P + A" Q)
With this we get
f=X1(I, = A1) 'w € image(P + A7'Q) & w € kernel(col[ X, Ji]\Z})

-~

=:K

so finally
kernel(T') = {f € (1), | f(A) = X1(Id, — A1)~ tw, w € K}

Concerning (18) : j < —I, then from (17) R; = A~/ R posesses only positive partial
indices and with Lemma 8.2 we get

a; = dim(kernel(R;)) =k, the total index of R,
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on the other hand from (12) we have
k = indr(det(R;))
= mdp(det( ~IR))
(det(A~ "+ Ry))
+7) + indr (det(R;))
n(j+1)

dp
(
and so
aj =p—n(j+1)
If > —I, then
kernel(T;) = kernel(T}) N image(P + A7 Q)
and analogously to above
FN) = X1(M\Id, — J1)~'w € image(P 4+ N7 Q) & w € kernel(col[ X, Ji]:Z07")
which implies
aj = dim(kernel(T;)) = dim(kernel(col[ X Jf]i;éfl))

10. THE MATRIX-RIEMANN-PROBLEM

For a continous matrix valued function A € gl(n,C(I")) the matrix Riemann
problem consists in finding all w.r.t I piecewise holomorphic vectorvalued functions
_J 2(2) ,zely
o(z) = { d (z) ,zeTl_

that have at worst a pole of finite order in 0, can be continously extended to I'" and
the boundary values satisfy

(19) q)+ = Aq)_

Note that if ®q,...,®; solves (19) and rq,...,r; are rational and nowwhere zero,
then

(20) U(z)=r1(2)®1(2) + ... +ri(2)Pi(2)

is again a solution.

Definition 10.1. A set of solutions is called complete, if every other solution is of
the form (20).

First we’ll show how to obtain a complete solution set from a factorisation of
A€ GL(n,C(I)). Solet A € GL(n,C(I")) posess a factorisation A = AL DA_ with
Ay € GL(n,H*) and D(t) = diag[t*,. .., t"*] with k; > ... > k, partial indices.

Set N r
a() ::{ ) bz e

)
Hence the columns of &, and ®_ solve (19) and it remains to show that this is
indeed a complete solution. So let ¥ solve (19) and define the piecewise holomorphic

function
[ DY (»)ATN(2)T¥(2) ,z€T
T(z) = { A,(z—i)_‘If(z) , 2z € Fi
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Since ¥ is a solution
D'AT'U, =A T &Y. =Y onl

so that Y is holomorphic in C\{0} with finite order pole at 0 i.e T € GL(n, R5 (I))
and so the columns ¥ form a complete solution set of (19).

Conversely, given a complete solution set {®;} of (19), pick ®4,..., P, with the
following properties :

(1) det[®1(c0), ..., Bn(c0)] # 0

(2) The principal parts of the Laurent series at 0 of the ®4,...,®, are the
shortest possible i.e have the least possible negative powers.

A solution set with these properties will be called a standard set. Set
X(2) = [81(2),...,Bu(2)] 2 €C\T

then Xy = AX_ on I". Denote with ord(®;) the order of the pole 0 of ®; and
arrange these such that

ord(®y) > ... > ord(®,)
Define

o o X_;,_(Sijzord(q)i) , 2 € F_;,_
X(z) = { X_(2) ,z€l_

then obviously on I we have
(21) T (2)82 %) = A(2)X_(2)
Lemma 10.1. X is invertible in T;\{0} and X_ is invertible in T'_.

Proof. We'll show that det(X_(z)) # 0 for all z € T'_. If there where a 2o € I'— with
det(X_(z9)) = 0, then there would be a p(1 < p < n) and ¢1,...,¢, € C, ¢, #0
with

cp®p(20) + ...+ ¢ Pp(20) =0
But then

$,(2) = (2 — 20) Zq@i(z)

solves (19) and since ord(®,) < ord(®,) after a possible rearranging we gat the
contradiction to the~fact that ®4,...,®P, is a standard solution. Analogously the
claim is shown for X . d

A consequence of (21) is that )Z'+ and X_ are simultanously regular or singular
on I, so that under the further assumption

det(X_(2)) #20 VzeTl
a factorisation of A € GL(n,C(T")) w.r.t I is obtained :

A(Z) = )?+(5ij2_ord(q>")X:1(Z)
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11. LINEAR DIFFERENTIAL EQUATIONS

The monodromy of a fundamental solution of a system of linear differential
equations on Cisa representation of the fundamental group, that assigns to each
homotopy class [o] that regular matrix, with which the fundamental system trans-
forms when analytically continued along o. The Riemann-Hilbert-Problem consists
in finding a system with a fundamental solution whose monodromy coincides with a
given representation. Furthermore we can prescribe poles for the coefficient matrix
so that the search for the system with the smallest order poles makes sense. So
consider a system of linear differential equations :

(22) df = wf

with w(z) a n X n-matrix of meromorphic differential forms with poles in S :=
{s1,...,sk}. By applying conformal transformations of C it is always possible to
replace poles in 0 and co. Now join these points sq,..., s, by a piecewise linear
path and denote the half-open line between s; and s;;1, that contains the point s;

but not the point s;41, by I'; and define a piecewise constant matrix valued function
A(z) by

A(Z)::Mi~...'./\/11, zely,i=1,...,k

where M is the representation of a loop around s;, that doesn’t traverse any point
of S. Consider the matrix Riemann problem for A(z) :

&, =Ad_ onlj\s;,i=1,....k

A solution

_f ®4(2),z€T
®(z) = { @t(z), z € Fi

satisfies

(1) det(®(2)) # 0 for all z € C\{0,s1,...,s,}
2o [ ®i(2)2P 2 €Ty

(2) @)= { & (2),z€D
and is holomorphically invertible at 0 for a suitable diagonal matrix D. ®(z) can
be analytically continued along any path not going through 0 or any of the points
s;. If @ traverses along a small loop around any of the points s, then ® goes to
M;®. In the same way & transforms, since it posesses the same monodromy, so
that the matrix differential form

(23) w:=ddd?

is single valued on C and holomorphic everywhere except at the prescribed sq, ..., sk.
Hence system (22) with matrix form w of (23) has the given monodromy and
posesses poles at the prescibed points sq,..., Sk.

This result implies that to presribed poles and monodromy there always exists a
regular system, that is a system with poles of finite order. The Riemann-Hilbert
problem asks for the existence of a Fuchsian system, that is a system with poles
of order at most 1. Hilbert was convinced of the existence of such a system, but
in 1989 A.A.Bolibruch [1] found a counter example so that currently it is being
investigated under which conditions the problem has a positive answer.
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12. THE DRESSING METHOD

A number of physically important non-linear systems of diferential equations
have the property that one can assign to them a linear system, the Lax pair, in which
solutions of the non-linear system appear as coefficients of the linear one [9]. In the
‘direct’ method one naturally tries to find solutions from given coefficients. The
inverse problem consists in determining the coefficients from a certain behaviour
of a solution. An essential tool is to introduce an additional rational dependance
of a solution on a complex parameter, the so called spectral parameter A. The
dressing method consists in reducing the integration of the non-linear system to a
Matrix-Riemann problem. To this end, consider the following pair of differential
equations
(24) v, =U0v ¥,=VV¥

with U(z,y,\), V(z,y,A) complex n x n-matrices that depend rationally on A and
the indices denote the partial derivatives with respect to z resp. y. From ¥,, = ¥,
we get the integrability condition

(25) U, -V, +[U,V]=0

Given a solution ¥y, this determines the corresponding Uy, V5. The following proce-
dure is due to Zakharov and Shabat [13] and allows to construct new solutions from
¥, via a Matrix-Riemann problem. Let I' be a contour and Go(\) € GL(n,C(T)) .
Consider for

G(CC, Y, A) = \I/()(CC, Y, A)(;0()\)\1/51 (xv Y, )\)
pointwise for all z, y the Matrix-Riemann problem :
&, =G®_ onT

and if I' goes through any poles of Uy, Vp, then set G = 1 there, so that taking
partial derivatives gives on the one hand

G = (24). 02" + 0, (271,
and on the other hand from the definition of G
Ge = U0, GoVyt + UGy, Uyt +90Go (T 1Y),
——

= UpUoGoVyt + UG, U,

= UyG + GU,
and differentiating w.r.t y gives

o, '+ &, (9T, = VoG + GV

Now define with the solutions of the Matrix-Riemann problem two new solutions
Uy, Vi by gauge transforming Uy, Vp. Since this transformation is isospectral, all
singularities of Uy, V; are preserved :

Up = (1), 0_ + &~ U d_
Vi= (921, o_ + ' Vpd_

These matrices satisfy the integrability condition and the functions
=07y =BT

solve (24) and are compatible with U; and V;.
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