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Solutions

6. Proposed by Bernd Kreussler.

Does there exist an even positive integer n for which n + 1 is divisible by 5
and the two numbers 2n + n and 2n − 1 are co-prime?

(Note: Two integers are said to be co-prime if their greatest common divisor
is equal to 1.)

Solution Because (2n + n)− (2n − 1) = n+ 1, we have

gcd(2n + n, 2n − 1) = gcd(n+ 1, 2n − 1) .

From 22 ≡ 4 (mod 5), 23 ≡ 3 (mod 5) and Fermat’s Little Theorem we see
that 2n ≡ 1 (mod 5) iff n is divisible by 4. Hence, when n ≡ −1 (mod 5) and
n ≡ 0 (mod 4), the two numbers 2n + n and 2n − 1 are both divisible by 5.
They can only be co-prime for n ≡ 2 (mod 4).

Suppose n = 4k + 2, then n + 1 = 4k + 3 and this number is divisible by 5
exactly when k ≡ 3 (mod 5). Such k can be written as k = 5m + 3 and so
n = 20m+14. This means that the smallest candidates for n for which 2n+n
and 2n − 1 could be co-prime, are n = 14, 34, 54, . . ..

Next we observe that 2n ≡ (−1)n ≡ 1 (mod 3) for all even numbers n. Hence,
whenever n+ 1 is divisible by 3, the two numbers 2n + n and 2n − 1 are both
divisible by 3. This rules out n = 14.

Consider n = 34, then n + 1 = 35 = 5 · 7. As we have seen above, 24 ≡
1 (mod 5) and so 234 ≡ 22 ≡ 4 (mod 5) which means that 5 does not divide
gcd(35, 234 − 1). Similarly, we have 23 ≡ 1 (mod 7) and so 234 ≡ 2 (mod 7),
which shows that 7 does not divide gcd(35, 234−1). Hence, gcd(35, 234−1) = 1
and n = 34 is the smallest positive even integer for which n+ 1 is divisible by
5 and for which 2n + n and 2n − 1 are co-prime.
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7. Proposed by Gordon Lessells.

Five teams play in a soccer competition where each team plays one match
against each of the other four teams. A winning team gains 5 points and a
losing team 0 points. For a 0-0 draw both teams gain 1 point, and for other
draws (1-1, 2-2, etc.) both teams gain 2 points. At the end of the competition,
we write down the total points for each team, and we find that they form five
consecutive integers. What is the minimum number of goals scored?

Solution 1

Ten matches are played each one contributing either 2, 4 or 5 points. Hence
the total number of points is between 20 and 50.

If the team scores are five consecutive integers, then the total number of points
must be a multiple of 5. If the total number of points is 20, all teams will
score 4 and if the total number of points is 50 all team totals will be multiples
of 5. Neither of these possibilities satisfy the conditions. Therefore, we need
to consider the following five cases:

(a) scores are 3, 4, 5, 6, 7,

(b) scores are 4, 5, 6, 7, 8,

(c) scores are 5, 6, 7, 8, 9,

(d) scores are 6, 7, 8, 9, 10 and

(e) scores are 7, 8, 9, 10, 11.

Case (a) Number of wins is odd. 3 wins yield 15 points and the other seven
matches yield more than 10 points. The only possibility is one win, 8 0-0
draws and one score draw. But the team that wins must gain at least 3 points
in the other matches. Hence this case is impossible.

Case (b) The number of wins is even and cannot be 4 as only three teams
have a score of five or more and none have a score of 10. No wins means there
are 5 score draws and 5 no score draws. The teams scoring 8 and 7 must be
involved in 7 score draws to achieve these totals. Hence, the only possibility
is 2 wins 2 score draws and 6 no score draws. The table

A B C D E total
A 5 1 1 1 8
B 0 1 1 5 7
C 1 1 2 2 6
D 1 1 2 1 5
E 1 0 2 1 4

realizes this possibility. The minimum number of goals in this case is 2+4 = 6.

Case (c) The number of wins is odd. No team has more than one win. If the
number of wins is five, each team must win one match and all other matches
are no score draws. A total of 9 is now impossible. If the number of wins is 3,
there must be 3 score draws and 4 no score draws. At least 9 goals are scored
in this scenario. If the number of wins is 1, there are 6 score draws and three
no score draws. This gives at least 13 goals.
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Case (d) Again we can calculate the number of wins (W), score draws (S) and
no score draws (N) yielding 40 points. The four possibilities are (W,S,N) =
(6, 1, 3) or (4, 4, 2) or (2, 7, 1) or (0, 10, 0). The minimum number of goals is
W + 2S which in each case is bigger than 6.

Case (e) Calculating possible values of (W,S,N) we obtain (7, 2, 1), (5, 5, 0)
giving more than 6 goals.

Thus the minimum number of goals scored in the tournament is 6.

Solution 2

If the five consecutive scores of the teams are a − 2, a− 1, a, a + 1, a + 1, the
total number of points is 5a. Each match contributes 5, 4 or 2 points to this
total.

Let w be the number of matches that did not end in a draw, d0 the number
of 0-0 draws and d1 the number of draws with goals. The minimal possible
number of goals scored is g = w+2d1. The number of matches is

(

5
2

)

= 10, so
we obtain

w + d0 + d1 = 10

5w + 2d0 + 4d1 = 5a .

Eliminating d0 from these equations we obtain 3w + 2d1 = 5(a − 4). This
equation implies 3w ≡ −2d1 (mod 5), hence w ≡ d1 (mod 5).

None of w, d1 and w+ d1 can exceed 10. Hence, d1 = w+5t with −2 ≤ t ≤ 2.
We obtain g = w + 2d1 = 3w + 10t.

• If t = −2, we have w = d1 + 10 ≤ 10, hence w = 10, d1 = 0 and g = 10.

• If t = −1, we have d1 = w − 5 ≥ 0 and w + d1 = 2w − 5 ≤ 10, hence
5 ≤ w ≤ 7. If w ≥ 6, we have g = 3w − 10 ≥ 8. For w = 5 we get g = 5.

• If t = 0, and w ≥ 3 we have g = 3w + 10t ≥ 9.

• If t ≥ 1, we have g ≥ 10.

Hence, there are only four cases in which g ≤ 6. They are all shown in the
table below. The values of d0, a and g are obtained from the equations above.

case w d1 d0 a g
1 0 0 10 4 0
2 1 1 8 5 3
3 5 0 5 7 5
4 2 2 6 6 6

Case 1. If d0 = 10 all matches were no score draws, hence all teams scored 5
points contradicting the conditions.

Case 2. If a = 5, the winning team achieved 7 points. But, if w = 1 the team
who has won one match cannot have lost any of their matches, hence would
have scored at least 8 points.
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Case 3. If a = 7, the maximum number of points a team scored is 9, hence no
team won two matches. As d1 = 0, the top team can have scored at most 3
points from the matches it didn’t win, hence cannot have got 9 points in total.

Case 4. This case is actually possible, as the following table shows.

A B C D E total
A 5 1 1 1 8
B 0 1 1 5 7
C 1 1 2 2 6
D 1 1 2 1 5
E 1 0 2 1 4

Therefore, the minimum number of goals scored is 6.
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8. Proposed by Jim Leahy.

A line segment B0Bn is divided into n equal parts at points B1, B2, . . . , Bn−1

and A is a point such that ∠B0ABn is a right angle. Prove that

n
∑

k=0

|ABk|
2 =

n
∑

k=0

|B0Bk|
2 .

Solution 1

Let a = |B0Bn|, b = |ABn| and c = |AB0|. Then |B0Bk| = ka/n. Because
∠B0ABn = 90◦, we have cos∠AB0Bn = c/a.

b

B0

b

B1

b

B2

b

Bk

b

Bn

b

Bn−1. . .. ..

b
A

b
c

Hence, for k = 1, 2, . . . , n− 1, the Cosine Rule for triangle AB0Bk gives

|ABk|
2 = c2 + |B0Bk|

2 −
2c2

a
|B0Bk| = |B0Bk|

2 + c2
(

1−
2k

n

)

.

Therefore, using that |AB0|
2 = c2, |ABn|

2 = b2 and c2 + b2 = a2 = |B0Bn|
2,

we obtain

n
∑

k=0

|ABk|
2 = c2+b2+

n−1
∑

k=1

(

|B0Bk|
2 + c2

(

1−
2k

n

))

=

n
∑

k=0

|B0Bk|
2+c2

n−1
∑

k=1

(

1−
2k

n

)

.

Now using
∑

n−1
k=1 k = n(n− 1)/2 we get

n−1
∑

k=1

(

1−
2k

n

)

= (n− 1)−
2

n
·
n(n− 1)

2
= (n− 1)− (n− 1) = 0.

This could also be seen directly from 1 − 2(n−k)
n

= 2k
n
− 1. In any case, the

desired result follows.

Solution 2

We are going to prove the stronger equations

|ABk|
2 + |ABn−k|

2 = |B0Bk|
2 + |B0Bn−k|

2 for k = 0, 1, . . . , n.

Let M be the mid-point of B0Bn. Let r = |AM | and d = |MBk| = |MBn−k|.

If n = 2m is even, then M = Bm, otherwise M is not among the points
Bi. Because ∠B0ABn = 90◦, A is on the circle with diameter B0Bn and so
r = |B0M | = |MBn|. If n = 2m and k = m, the claimed equation now follows:
2|AM |2 = 2r2 = 2|B0M |2.
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b

B0

b

Bk

b

Bn

b

Bn−k

b
A

b
A′

b

M

d d

r

r

Suppose now that 2k 6= n, then Bk 6= Bn−k. Let A′ be the point for which
ABkA

′Bn−k is a parallelogram. The diagonals of this parallelogram intersect
at M and |A′M | = |AM | = r. The Parallelogram Law

2|ABk|
2 + 2|ABn−k|

2 = |BkBn−k|
2 + |AA′|2

now gives us
|ABk|

2 + |ABn−k|
2 = 2d2 + 2r2.

On the other hand, |B0Bk|
2 + |B0Bn−k|

2 = (r − d)2 + (r + d)2 = 2r2 + 2d2

which establishes that

|ABk|
2 + |ABn−k|

2 = |B0Bk|
2 + |B0Bn−k|

2 for k = 0, 1, . . . , n.

Summation over k followed by a division by 2 establishes the required equality.

Remark. Instead of using the Parallelogram Law, one could establish

|ABk|
2 + |ABn−k|

2 = 2d2 + 2r2

with the aid of the Theorem of Pythagoras directly as follows. Let Pk and
Pn−k be the orthogonal projections of Bk and Bn−k, respectively, onto the line
AM .

b

Bk

b

Bn−k

b
A

b

M

b

Pk

b
Pn−k

d d
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Note that the two right angled triangles BkPkM and Bn−kPn−kM , both with
hypotenuse of length d, are congruent. Recalling |AM | = r and setting e =
|MPk| = |MPn−k|, we obtain from Pythagoras’ Theorem

|ABk|
2 + |ABn−k|

2 = |BkPk|
2 + (r + e)2 + |Bn−kPn−k|

2 + (r − e)2

= |BkPk|
2 + e2 + |Bn−kPn−k|

2 + e2 + 2r2

= 2d2 + 2r2.
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9. Proposed by Steve Buckley.

Show that for all non-negative numbers a, b,

1 + a2017 + b2017 ≥ a10b7 + a7b2000 + a2000b10 .

When is equality attained?

Solution

We use AM-GM three times, taking means of 2017 items, each of which equals
12017 or a2017 or b2017:

2000 · 12017 + 10 a2017 + 7 b2017

2017
≥ 12000 · a10 · b7

10 · 12017 + 7 a2017 + 2000 b2017

2017
≥ 110 · a7 · b2000

7 · 12017 + 2000 a2017 + 10 b2017

2017
≥ 17 · a2000 · b10

Adding these three inequalities gives the desired inequality.

For equality, all of these inequalities must hold with equality. By the conditions
for equality in AM-GM, this means that a = b = 1.
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10. Proposed by Steve Buckley.

Given a positive integer m, a sequence of real numbers a = (a1, a2, a3, . . .) is
called m-powerful if it satisfies

(

n
∑

k=1

ak

)m

=
n
∑

k=1

am
k

for all positive integers n.

(a) Show that a sequence is 30-powerful if and only if at most one of its terms
is non-zero.

(b) Find a sequence none of whose terms is zero but which is 2017-powerful.

Solution

If at most one term in a sequence a is non-zero, it is immediate that it is
m-powerful for all m ∈ N. We will see that there are no other 30-powerful
sequences (or indeed, m-powerful for any even m), but that there are many
other sequences that are m-powerful for all odd m.

We begin our analysis with a simple lemma.

Lemma 1. For m ∈ N, let Pm(x, y) = (x + y)m − xm − ym, x, y ∈ R. Then

Pm(x, y) = 0 whenever xy = 0. Moreover, Pm has no other roots if m is even,

but Pm(x,−x) = 0 if m is odd.

Proof. Let p(t) = (1 + t)m − 1 − tm, t ∈ R. By expansion of (1 + t)m, we see
that p is a polynomial with non-negative coefficients, and so p(t) > 0 for t > 0.
Suppose additionally that m is even. If −1 ≤ t < 0, then (1 + t)m − 1 ≤ 0, so
p(t) ≤ −tm < 0. If t < −1, then 0 < (1 + t)m < tm, so p(t) < −1 < 0. We
conclude that 0 is the only root of p when m is even.

If xy 6= 0, then Pm(x, y) = xmp(t), where p is as above, and t = y/x 6= 0. It
follows that Pm(x, y) 6= 0 if m is even and xy 6= 0.

The statements that Pm(x, y) = 0 when xy = 0 (regardless of the parity of m)
and Pm(x,−x) = 0 when m is odd, both follow immediately.

Fix an arbitrary m ∈ N and an arbitrary sequence a = (an). For m,n ∈ N, let

S(m,n) =

(

n
∑

k=1

ak

)m

−
n
∑

k=1

am
k
,

and let D(m,n) = S(m,n + 1) − S(m,n). The condition “a is m-powerful”
says that S(m,n) = 0, n ∈ N, and so we also have D(m,n) = 0.

Define xn = an+1 and yn =
∑

n

k=1 an. The equation S(m,n) = 0 can be written
as

ym
n
=

n
∑

k=1

am
k
,

so if this equation holds, then the equation D(m,n) = 0 can be written as

(xn + yn)
m − xm

n
− ym

n
= 0 .
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Suppose now that m is even and a is m-powerful. By Lemma 1, we conclude
that xnyn = 0 for all n ∈ N. We will use these last equations to prove by
induction on i ∈ N, that at most one of the terms a1, . . . , ai is non-zero; we
call this property Ai.

A1 is trivially true, so suppose that Ai is true for a specific i = n ∈ N. If
a1, . . . , an are all zero, then An+1 follows immediately, so we may assume that
exactly one of these terms is non-zero. But now yn 6= 0, so the equation
xnyn = 0 implies that xn = an+1 = 0, and we again deduce An+1. This finishes
the proof that if m is even, then the m-powerful sequences are those with at
most one non-zero term. Part (a) follows.

The analysis is similar for m odd, but now Pm has other roots in Lemma
1. By considering these roots, our analysis readily leads us to see that a =
((−1)nc)∞

n=1 is m-powerful for every c ∈ R. Taking any non-zero c, we get an
example with the properties required in (b).
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