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6. There are 14 boys in a class. Each boy is asked how many other boys in the
class have his first name, and how many have his last name. It turns out that
each number from 0 to 6 occurs among the answers.

Prove that there are two boys in the class with the same first name and the
same last name.

Solution (Proposed by Mark Flanagan)

Consider groups of students with the same first name – these groups partition
the 14 students. Also consider groups of students with the same last name
– these groups also partition the 14 students. Each student belongs to two
groups, and by assumption there are groups of size 1, 2, 3, 4, 5, 6 and 7; but
these numbers add up to 1 + 2 + 3 + 4 + 5 + 6 + 7 = 7(4) = 28, so there is one
group of each size from 1 to 7 and no other groups.

Suppose without loss of generality the group of 7 is a group of students with
the same first name. There are at most 6 groups by last name, so by the
Pigeonhole Principle, two students in the group of 7 must also have the same
last name.
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7. For each odd integer p ≥ 3 find the number of real roots of the polynomial

fp(x) = (x − 1)(x − 2) · · · (x − p + 1) + 1 .

Solution (Proposed by Bernd Kreussler)

We first look at the cases p = 3, 5, then deal with p ≥ 7. The polynomial

f3(x) = (x− 1)(x− 2) + 1 = x2 − 3x + 3 =
(

x − 3
2

)2
+ 3

4
> 0 has no real root.

If p = 5, we obtain

f5(x) = (x − 1)(x − 2)(x − 3)(x − 4) + 1

= (x − 1)(x − 4) · (x − 2)(x − 3) + 1

= (x2 − 5x + 4)(x2 − 5x + 6) + 1

=
(

x2 − 5x + 5
)2

.

Because the discriminant of x2 − 5x + 5 is 52 − 4 × 5 > 0, we see that f5(x)
has two real (double) roots.

If p ≥ 7, we proceed as follows. First note that the degree of fp(x) is equal
to p − 1, hence this polynomial can have at most p − 1 real roots. We obvi-
ously have fp(1) = fp(2) = . . . = fp(p − 1) = 1. We shall show below that
f

(

2k − 1
2

)

< 0 for k = 1, 2, 3, . . . , p−1
2

. This implies the existence of two real
roots between 2k − 1 and 2k. Therefore, we conclude that fp(x) has exactly
p − 1 real roots, if p ≥ 7 is an odd integer.

For k = 1, 2, 3, . . . , p−1
2

we have

fp

(

2k − 1

2

)

=
4k − 3

2
· . . . · 3

2
· 1
2
·
(

−1

2

)

·
(

−3

2

)

·
(

−5

2

)

·
(

−2p − 4k − 1

2

)

+1

The product has p − 1 ≥ 6 factors. Only ±1
2

are of modulus less than 1. The
number of negative factors is odd (equal to p−2k), so the product is negative.
The modulus of the product is always at least 1

2
· 1

2
· 3

2
· 5

2
· 7

2
= 105

32
> 1 except

when p = 7 and k = 2, where it is equal to 5
2
· 3

2
· 1

2
· 1

2
· 3

2
· 5

2
= 225

64
> 1. This

shows that f
(

2k − 1
2

)

< 0 for k = 1, 2, 3, . . . , p−1
2

.
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8. In the triangle ABC we have |AB| = 1 and 6 ABC = 120◦. The perpendicular
line to AB at B meets AC at D such that |DC| = 1. Find the length of AD.

Solution (Proposed by Jim Leahy)

b

B

b
C

b
A

b D

30◦90◦

1

y

1

x

Let x = |AD| and y = |BC|. From △ADB we obtain sin(6 ADB) = 1
x

and

from △BDC we get sin(6 BDC)
y

= sin(30◦)
1

= 1
2
. Since sin( 6 ADB) = sin(6 BDC),

this gives 1
x

= y

2
, hence y = 2

x
. The cosine theorem for △ABC gives

−1

2
= cos(6 ABC) =

1 + y2 − (1 + x)2

2y
=

1 +
(

2
x

)2 − (1 + x)2

4
x

.

Simplifying this, we obtain x4 + 2x3 − 2x− 4 = 0 . Rewriting this polynomial
as x(x3 − 2) + 2(x3 − 2) = (x3 − 2)(x + 2), we see that x = 3

√
2.
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9. Let n ≥ 3 be an integer and a1, a2, . . . , an be a finite sequence of positive
integers, such that, for k = 2, 3, . . . , n

n(ak + 1) − (n − 1)ak−1 = 1 .

Prove that an is not divisible by (n − 1)2.

Solution (Proposed by Bernd Kreussler)

The given recursion can be rewritten as ak−1 = n
n−1

ak + 1 for 2 ≤ k ≤ n. Let
us write, for simplicity, q = n

n−1
, so that we have ak−1 = qak + 1. We obtain

an−1 = qan + 1

an−2 = qan−1 + 1 = q2an + q + 1

an−3 = qan−2 + 1 = q3an + q2 + q + 1

and we guess the general formula an−k = qkan + qk−1 + qk−2 + . . . + 1, which
is easily shown by induction. In particular, with k = n − 1, we obtain

a1 = qn−1an + qn−2 + qn−3 + . . . + 1 = qn−1an +
qn−1 − 1

q − 1
.

We now use q = n
n−1

, from which we get 1
q−1

= n − 1 and

a1 = qn−1an + (n − 1)(qn−1 − 1) =
nn−1an + (n − 1)nn−1

(n − 1)n−1
− (n − 1) .

Because a1 is an integer, this implies that nn−1an + (n − 1)nn−1 has to be
divisible by (n − 1)n−1. Because gcd(n − 1, n) = 1, this is equivalent to
an + (n − 1) being divisible by (n − 1)n−1. Hence, there exists an integer K,
such that an = −(n−1)+K(n−1)n−1 = (n−1) (K(n − 1)n−2 − 1). As n ≥ 3,
K(n− 1)n−2 − 1 ≡ −1 6≡ 0 mod (n− 1), hence an is not divisible by (n− 1)2.

Remark: By induction, we can prove that ak+1 = K(n − 1)knn−1−k − (n − 1).
This shows that a2, a3, . . . , an are divisible by (n − 1), but a3, . . . , an are not
divisible by (n − 1)2 and a2 is divisible by (n − 1)2 iff K ≡ 1 mod (n − 1).
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10. Suppose a, b, c are the side lengths of a triangle ABC. Show that

x =
√

a(b + c − a), y =
√

b(c + a − b), z =
√

c(a + b − c)

are the side lengths of an acute-angled triangle XY Z, with the same area as
ABC, but with a smaller perimeter, unless ABC is equilateral.

Solution (Proposed by Finbarr Holland)

Let 2s = a + b + c, and denote by ∆ the area of ABC. Then x =
√

2a(s − a),
etc., and ∆2 = s(s − a)(s − b)(s − c). To show that XY Z is acute, because
of the cosine theorem, we must show x2, y2, z2 satisfy the triangle inequality.
But, e.g.,

x2 < y2+z2, ⇐⇒ a(s−a) < b(s−b)+c(s−c), ⇐⇒ b2+c2−a2 < s(b+c−a),

i.e.,

2(b2+c2−a2) < (b+c)2−a2, ⇐⇒ (b−c)2 < a2, ⇐⇒ (b−c−a)(b−c+a) < 0,

which is true. Also,

cos(X) =
y2 + z2 − x2

2yz
=

(c + a − b)(a + b − c)

4
√

bc(s − b)(s − c)

=
4(s − b)(s − c)

4
√

bc(s − b)(s − c)
=

√

(s − b)(s − c)

bc
= sin

(

A

2

)

Hence,

yz sin(X) = 2
√

bc(s − b)(s − c) cos

(

A

2

)

= 2
√

bc(s − b)(s − c)

√

s(s − a)

bc

= 2
√

s(s − a)(s − b)(s − c) = 2∆ .

Thus ABC and XY Z have the same area. However,

x ≤ a + b + c − a

2
=

b + c

2
,

with equality iff 2a = b + c, whence

x + y + z ≤ (b + c) + (c + a) + (a + b)

2
= a + b + c ,

with equality iff 2a = b + c, 2b = c + a, 2c = a + b, i.e., a = b = c. Thus, the
perimeter of XY Z is not greater than the perimeter of ABC.
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