Chapter 4. Feuerbach’s Theorem

Let A be a point in the plane and k a positive number. Then in the
previous chapter we proved that the inversion mapping with centre A and
radius £ is the mapping

Inv: P\{A} — P\{A}

which is defined as follows. If Bj is a point, then Inv(B;) = By if By lies on
the line joining A and B; and

|AB, || AB,| = k2.

We denote this mapping by Inv(A, k?). We proved the following four prop-
erties of the mapping Inv(A, k?).

(a) If A belongs to a circle C(O,r) with centre O and radius r, then
Inv(C(O,r)) is a line [ which is perpendicular to OA.

(b) If  is a line which does not pass through A, then Inv(l) is a circle such
that [ is perpendicular to the line joining A to the centre of the circle.

(c) If A does not belong to a circle C(O, ), then

Inv(C(O,r)) =C(O,r)
k2
p(A,C(0,1))

with v’ = r.

(d) If Inv(B,) = By and Inv(Cy) = Cy, where By and C) are two points
in the plane, then



kQ

B,Cy| = |B,CY| ———
|B2Ca| = |B1Ch| |AB,[|ACY|

Remark Let A be an arbitrary point which does not belong to the
circle C(O,r) with centre O and radius r and let pc(A) be the power of A
with respect to the circle C = C(O,r). Then if Inv is the mapping with pole
(centre) A and k? = pc(A), i.e.

Inv := Inv(A, pe(A))

then Inv(C(O,r)) = C(O,r), i.e. C(O,r) is invariant under the mapping
Inv. This follows from the following observations. Since A does not belong
to C(O,r), then Inv(C(O,r)) is a circle with radius 7" where

k‘2
r" =r———, by (c) above
ey
=7, since k* = pc(A)
Furthermore, if P is any point of C(O,r) and P' = Inv(P), then
[AP|[AP'] = pe(A).

Thus P’ is also on the circle C(O,r), so the result follows.

Feuerbach’s Theorem The nine point circle of a triangle is tan-
gent to the incircle and the three excircles of the triangle.

We prove this using inversion. The proof is developed through a sequence of
steps.

Step 1 Let ABC be a triangle and let Inv be the mapping Inv(A, k?)
for some k > 0. If C(O, R) denotes the circumcircle of ABC, then

Inv(C(ABQC))

is a line L which is antiparallel to the line BC'



Proof Let O be the circumcentre of the tri- T
angle ABC and let Inv denote the mapping Inv(A, k?).
From part (a) of the proposition listing the proper-
ties of inversion maps, Inv(C(ABC)) = B;C; where 0
By, Cy are images of B and C' under Inv. Then the line
through B; and C} is perpendicular to line AO (Figure ’e

1).

Now let T'A be tangent to C(ABC) at A. Then if X
is the point of intersection of AO with C(ABC'), we have Figure 1:
TAB =90° - BAX
= BXA
= BCA.
Since TALAO and AOLB'C’, then TA||B'C" so

TAB = AB'C".
Thus AB'C’ = BCA and so B'C" is antiparallel to BC, as desired.

Step 2 Let ABC be a triangle. The incircle C(Z,r),
with centre I and radius r, touches the sides BC,C'A and
AB at the points P,Q and R respectively (Figure 2). If s =

1
E(a + b+ ¢) denotes the semiperimeter, we have

‘CP’ = |CQ| =s5—=¢
|BP| = |BR|=s—b,
|AR| = |AQ| = s — a.

Proof Let Figure 2:
r=|CP|=[Cq),
y = |AR| = |AQ)],
x = |BR| = |BP].

Then s = v+ y+ 2 and a = v+ 2;0 = x + y and
c=yY+z.



So |CP|=|CQl=2=@+y+2)—(y+2)=s—c
Similarly for the other lengths.

Step 3 Let ABC be a triangle and let C(/,, ;) be the excircle touching
the side BC' and the sides AB and AC' externally at the points P,, R, and
Q. respectively (Figure 3). Then

|BP,| =s—cand |CP,| =s—b.

Proof Let

|AR,| = |AQ,| = =z,

|CQa| = |Cpa| =Y,

|BP,| = |BR,| = =.

Then

r—y= b7
r—z=c,
Yy+z=a.

Figure 3:

Adding, we get 2r =a+ b+ cso x = s.

From this y=x—b=s—0,

SO |CP,| = |CQ.| =s—b,
and z=x—c=S8—c,
SO |BP,| = |BR,| = s — ¢, as required.

Figure 4:

Remark If Ay is the midpoint of the side BC, then
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|A1P| = |A1Pa| (Figure 4)

This follows from the observation that

|BP| = s —b (Step 2)
|CP,| =s—0b (Step 3)

Then |A;P] :g—(s—b) = bgc’
a b—c
AP ==—(s—b) = :
AP =5~ (s =) ="
Step 4 If ABC is a triangle and Aj is a point on the
side BC' where the bisector of the angle at A meets BC' (Figure 4
5), then
BAs| = —2 and [CA5] = -2
A T bt
n B y) c
Proof |BAs| _ area(ABA;) [AB]|A4s| sm(E) _
|CAs| — area(ACA;) A Figure 5:
|AC|| AAs| sin(E)
[AB| _a
|AC| b’
. BA c
Since ’BA3| + |CA3‘ = a, then CJTB%LBJ = l_)
ac
Solve for |BAjs| to get |BAs| = s
ac ab
Finall CA;z| =a— = .
nally,  [CAs] = =37 = 700
Step b In a triangle ABC' let A; be the midpoint of the

side BC' and let A be the foot of the perpendicular from A to
BC' (Figure 6). Then

b2 — 2

A A =
|12’ 2a




A

|

|

B | c
4 4

2 1

Figure 6:

Proof We have 4
b — 2 = |AA 4+ |AC)? — |AAL|? — | Ay B)?
= (|A2C| + |A2B|)(|A2C| — [A2B])
= a{|A1As| + [A1C] — [A1B| + [A1 Ao}

= 2CL|A1A2|. B 4, 4
b — 2
Thus |A;1As| = 5, 7 88 required. Figure 7:
Step 6 Let C(O,r) be a circle with centre O and radius r

and let A be an arbitrary point not belonging to C(O,r). Con-

sider the inversion with pole A and k% = pc(A), the power of A

with respect to the circle C(O, ). Then the circle C(O, r) remains invariant
under the inversion Inv(A, pc(A)).

Proof Denote by Inv the inversion Inv(A, pc(A)). Since A does not
belong to C(O, ), then
Inv(C(O,r)) is a circle with radius " where
]{72
r'=r.—=r,
Pc

since we have k% = pc(A).
Now choose a point B on C(O,r) and let B’ = Inv(B). Then |AB||AB'| =
k% = pc(A). But this implies that B’ is a point of C(O,r). Thus

Inv(C(0, 1)) = C(O,r),

as required.



Step 7 In a triangle ABC let Ay, Ay, A3 and y
P be the following points on the side BC
Ay is the midpoint,

Ay is the foot of the altitude from A, v

Ajs is the point where the bisector of A meets BC,

P is the foot of the perpendicular from the incentre I B8 i P4 4

to BC' and so is the point of tangency of BC' with the

incircle (Figure 8). Figure 8:

Then |A1P|2 = |A1A2||A1A3|
Proof

We have |AP| = |AB|— |BP|
= g — (s —b) (step 3)

_b—c
2
b? — 2
|A1A2| = 2% (step 5)
|A1A3| = |BA;| — |BA;|

a ac
= — tep 4
5 bae (step 4)

~a(b—c)
2(b+c¢)

It follows that
b—rc
2

|ALP]? = | Ay As]| A1 Ag| = ( )%

as required.

We now return to the proof of Feuerbach’s theorem which states that the
nine point circle Cy of a triangle ABC' is tangent to the incircle and the three
escribed circles of the triangle.



Let A; be the midpoint of the side BC and let P
and P, be the points of tangency of the incircle and
the escribed circle drawn external to side BC, respec-
tively (Figure 9). We consider the inversion mapping
Inv(Ay, k*) where k* = |A;P|? and we denote it by
Inv.

Since P is the point of tangency of the side BC with
the incircle C(1,r), then

‘A1P|2 = Pc(1,r) (A1)
By step 6, it follows that

Inv(C(I,r))=C(I,r)

Since P, is the point of tangency of the side BC' with
the escribed circle C(1,,r,) and |A;P,| = |A;P|, then
PC(Ia,ra)(Al) = |A1Pa|2 = |A1P|2 = ]{?2, then

Figure 9:

Inv(C(1y,7r4)) = C(1a,74).

Thus C(I,r) and C(I,,7,) are both invariant under the

mapping Inv. Now we consider the image of the nine-point circle under Inv.
Since A; belongs to the nine-point circle Cy and A; is the pole of Inv, then
Inv(Cy) is a line d. But Cy is the circumcircle of the triangle with vertices
the midpoints Ay, By and C} of the sides of the triangle ABC' so the line d is
antiparallel to the line B1C} (step 1). Since B,C||BC then d is antiparallel
to the side BC.

We also have that |A;As||A;As| = |A;P]? (step 7) and since Ay belongs
to Cy then d is a line which passes through As, as Inv(As) = As.

Now let B’C" be the second common tangent of the
two circles C(I,r) and C(I,,r,). Since Aj is the bisec-
tor of the angle at A, these common tangents intersect
at Az (Figure 10). Now claim that ABC = AC'B’ and
AB'C" = ACB. From this it follows that the second com-
mon tangent B’C” is antiparallel to the side BC'. Since As
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Figure 10:



is on B’C’ then it follows that the line d must be B'C’,
that is

Inv(Cy) = line d.

Finally, since d is tangent to C(I,r) and C(I,,r,), then
Co = (Inv)7Y(d) is tangent to C(I,r) and C(I,,74).
Thus Cy is tangent to the incircle and escribed cir-
cle external to the side BC. Similarly it can be shown
that Cy is also tangent to the other two escribed cir-
cles.

It remains to show that the common tangents BC' and
B'C" are antiparallel.

Let P, () and R be the points of tangency of the sides
BC,CA and AB with the incircle C(I,r) of the triangle
ABC'. Let P’ be the point of tangency of the second com-
mon tangent B'C’ with the incircle C(I,r) (Figure 11).

The triangles AIR and AIQ are similar so

AIR = AIQ.
The triangles A3 P and Azl P are similar so
A3IP - AgIPI.

Then PIR = 180° — (AIR + A5IP)

= 180° — (AIQ + A;1P") Figure 11:
= P'IQ.
Since the quadrilaterals PIRB and P'IQC" are cyclic, then
PBR — 180° — PIR
= 180° — P'IQ
- POQ,

ie, ABC = AC'B.

Thus BCA = 180° — (A + ABC)
= 180° — (A + AC'B')
— AB'C'.



It follows that BC and B’C" are antiparallel, as required.

The point P’, where the second tangent B'C” touches C(/,r) is called the
Feuerbach point.

10



