SIXTEENTH IRISH MATHEMATICAL OLYMPIAD

Saturday, 10 May 2003 10a.m.-1p.m. First Paper

1. Find all solutions in (not necessarily positive) integers of the equation

$$(m^2 + n)(m + n^2) = (m + n)^3.$$

Solution. Assume integers m, n satisfy the given equation. Then, expanding the terms in the equation, and simplifying, we see that

$$mn + m^2n^2 = 3m^2n + 3mn^2$$
.

Equivalently,

$$mn(1 + mn - 3m - 3n) = 0.$$

Hence, either (i) mn = 0 or (ii) 1 + mn - 3m - 3n = 0. In case (i), the equation mn = 0 is satisfied only when either m = 0 and n is arbitrary, or n = 0 and m is arbitrary. Thus there are infinitely many trivial solutions, which can't be ignored!

In case (ii), we can rewrite the equation 1 + mn - 3m - 3n = 0 in the form

$$(m-3)(n-3) = 8.$$

Hence m-3, n-3 are factors of 8, leading to the solution pairs

$$(11,4), (7,5), (-5,2), (-1,1),$$

and the corresponding ones when we interchange m and n.

2. P, Q, R and S are (distinct) points on a circle. PS is a diameter and QR is parallel to the diameter PS. PR and QS meet at A. Let O be the centre of the circle and let B be chosen so that the quadrilateral POAB is a parallelogram. Prove that BQ = BP.

First Solution (from among many similar ones).

Since O is the midpoint of PS, it must be that OS is parallel and equal in length to AB. Thus ABOS is a parallelogram. It follows that AS is parallel to OB. But SQ is perpendicular to PQ (angle in a semi-circle). So, AS, and hence OB is perpendicular to PQ. But O is equidistant from P and Q and hence lies on the perpendicular bisector of PQ. It follows that OB is the perpendicular bisector of PQ and hence P is equidistant from P and Q.

Second Solution—The Irish Method! There are many different ways of attacking geometry problems, though the purists would much prefer to see them done by synthetic methods. Here's a solution that uses coordinate geometry,

which was favoured by some contestants. So, let P, Q, R, S be points on the unit circle $x^2 + y^2 = 1$ with coordinates (-1,0), (-c,s), (c,s), (1,0), respectively, where 0 < c < 1 and $s = \sqrt{1 - c^2}$. The lines PR, SQ have equations y = m(x+1), y = -m(x-1), respectively, where

$$m = \frac{s}{1+c} = \frac{\sqrt{1-c^2}}{1+c} = \sqrt{\frac{1-c}{1+c}}.$$

Hence A has coordinates (0, m). It follows that POAB is a rectangle and that B = (-1, m). Using the distance formula,

$$|BQ| = \sqrt{(-1 - (-c))^2 + (m - s)^2}$$

$$= \sqrt{(1 - c)^2 + s^2(\frac{1}{1 + c} - 1)^2}$$

$$= \frac{\sqrt{(1 - c)^2(1 + c)^2 + s^2c^2}}{1 + c}$$

$$= \frac{\sqrt{s^4 + s^2c^2}}{1 + c}$$

$$= \frac{s}{1 + c}\sqrt{s^2 + c^2}$$

$$= m$$

$$= |BP|.$$

3. For each positive integer k, let a_k be the greatest integer not exceeding \sqrt{k} and let b_k be the greatest integer not exceeding $\sqrt[3]{k}$. Calculate

$$\sum_{k=1}^{2003} (a_k - b_k).$$

Solution.

$$\sum_{k=1}^{2003} (a_k - b_k) = \sum_{k=1}^{2003} a_k - \sum_{k=1}^{2003} b_k.$$

We look at each sum separately.

Note that $44 \le \sqrt{2003} < 45$, and, for $1 \le n \le 43$, $a_k = n$ implies $k \in \{n^2, n^2 + 1, n^2 + 2, ..., n^2 + 2n\}$, which has 2n + 1 elements, and $a_k = 44$ implies $k \in \{1936, 1937, ..., 2003\}$, which has 68 elements. Thus

$$\sum_{k=1}^{2003} a_k = \sum_{n=1}^{43} n(2n+1) + 68.44 = 58,806,$$

since

$$\sum_{m=1}^{m} n(2m+1) = \frac{m(m+1)(2m+1)}{3} + \frac{m(m+1)}{2} = \frac{m(m+1)(4m+5)}{6}.$$

Note next that $12 \leq \sqrt[3]{2003} < 13$. Hence, for $1 \leq n \leq 11$, $b_k = n$ implies $k \in \{n^3, n^3 + 1, n^3 + 2, ..., n^3 + 3n^2 + 3n\}$, which has $3n^2 + 3n + 1$ elements, and $b_k = 12$ implies $k \in \{1728, 1729, ..., 2003\}$, which has 276 elements. Thus

$$\sum_{k=1}^{2003} b_k = \sum_{n=1}^{11} n(3n^2 + 3n + 1) + 12.276 = 17,964,$$

since

$$\sum_{n=1}^{m} n(3n^2 + 3n + 1) = 3\left(\frac{m(m+1)}{2}\right)^2 + \frac{m(m+1)(2m+1)}{2} + \frac{m(m+1)}{2}$$
$$= \frac{m(m+1)^2(3m+4)}{4}.$$

Hence the sum is 58,806 - 17,964 = 40,842.

- 4. Eight players, Ann, Bob, Con, Dot, Eve, Fay, Guy and Hal compete in a chess tournament. No pair plays together more than once and there is no group of five people in which each one plays against all of the other four.
 - (a) Write down an arrangement for a tournament of 24 games satisfying these conditions.
 - (b) Show that it is impossible to have a tournament of more than 24 games satisfying these conditions.

Solution.

(a) We can satisfy the conditions and schedule the players so that each of them plays exactly 6 games. To see this, call the players A, B, C, D, E, F, G, H, and consider the following graph which models the desired scheduling. (Vertices denote players and two vertices I and J are adjacent (joined) if players I and J play together). It's very clear from this that any selection of five of the eight vertices includes a pair of opposite vertices which are non-adjacent.

(b) Suppose a tournament with 25 or more games is possible. Since each game has two players, this involves at least 50 instances of a person playing a game. Since no player can play more than 7 games, this means that at least two players play seven times each. Suppose that A and B each play seven games - this accounts for 13 games.

At least 12 games then involve neither A nor B. Of the remaining six players, either

- (i) At least one player plays five games, or
- (ii) Each plays in exactly 4 games.

We will show that neither of these is possible.

- (i) Suppose C plays against all of D, E, F, G, H. This accounts for only five (of at least 12) games, so there is another game, e.g. D against E. Then each of A, B, C, D, E plays against each of the other four.
- (ii) Assume we are in case (ii) and suppose C plays against D, E, F and G but not H. Then H plays also against D, E, F and G. This accounts for only 8 of at least 12 games. But now any game among the players D, E, F, G will create a forbidden group of five (A, B, C) and two of D, E, F, G.
- 5. Show that there is no function f defined on the set of positive real numbers such that

$$f(y) > (y - x)(f(x))^2$$

for all x, y with y > x > 0.

Solution. Suppose that such a function f exists. Then, for each positive number x, f(x) is a real number. Letting y > 0 be arbitrary and picking any 0 < x < y, we see that f(y) > 0 for all y > 0. In particular, f(1) > 0. Taking x = 1 and $y \ge 1 + 4/f(1)^2$, we get

$$f(y) \ge \frac{4}{f(1)^2} \cdot f(1)^2 = 4$$
 whenever $y \ge z_0 := 1 + \frac{4}{(f(1))^2}$.

Thus P_0 is true, where the proposition P_n is defined as follows:

$$P_n: f(y) \ge 2^{n+2}$$
 whenever $y \ge z_n := z_0 + \sum_{i=1}^n 2^{-i}$.

Suppose P_k is true for a fixed integer $k \ge 0$. Taking $x = z_k$, and $y \ge z_k + 2^{-k-1} = z_{k+1}$ in the inequality, we get

$$f(y) > (y - z_k)(f(z_k))^2 \ge 2^{-k-1}(2^{k+2})^2 = 2^{k+3},$$

i.e., P_{k+1} is true. Inductively, P_n is true for all positive integers n. Now every z_n is less than $z_0 + 1$, so $f(z_0 + 1)$ would have to be larger than 2^{n+2} for all positive integers n, which is impossible.